Plant Virus Protein Research Group (I.Baļķe lab)
The Virus Protein Research Group conducts both fundamental and applied research on viral proteins, focusing primarily on plant viruses and virus-like particles (VLPs). The group’s work integrates molecular virology, structural biology, and protein engineering to understand how viral proteins function, interact, and self-assemble, as well as how these properties can be utilized for biotechnological and biomedical applications.
A significant emphasis of the group’s research is the structural biology of sobemovirus and other plant virus proteins. By employing advanced structural biology approaches, the group has resolved high-resolution three-dimensional structures of key viral proteins and protein complexes. These studies provide critical insights into protease function, protein–protein interactions, and assembly, contributing to a deeper understanding of the virus life cycle at the molecular level.
In addition to structural work, the group investigates the formation and properties of VLPs. Research has shown that sobemovirus coat proteins can self-assemble into stable VLPs in heterologous expression systems, featuring controllable morphology and selective nucleic acid encapsidation. These findings establish plant virus VLPs as versatile platforms for nanobiotechnology, vaccine antigen display, and diagnostic applications, combining structural robustness with biological safety.
The group also employs next-generation sequencing and molecular virology techniques to identify and characterize plant viruses, as well as to study viral genetic diversity and evolution. This work supports broader efforts to understand plant–virus interactions and contributes to research aimed at sustainable agriculture and plant health.
The group’s multidisciplinary strategy combines molecular virology, structural biology, protein engineering, and bioinformatics, allowing for the translation of fundamental viral protein research into practical applications in vaccine development, nanobiotechnology, and pathogen diagnostics. Collaborative projects with national and international partners enhance the scientific impact and foster innovation within LBMC’s broader research portfolio.

Ina Baļķe, PhD
Head of the research group, senior researcher
Personnel
Ina Baļķe, PhD, inab@biomed.lu.lv
Arnis Strods, PhD, arnis.strods@biomed.lu.lv
Rebeka Ludviga, MSc. biol., rebeka.ludviga@biomed.lu.lv
Ieva Kalnciema, MSc. biol., ieva.kalnciema@biomed.lu.lv
Santa Pikure, santa.pikure@biomed.lu.lv
Alise Heige Bajāra, alise.bajara@biomed.lu.lv
Areas for searching partners
- Vaccine design using virus-like particles
- Nanobiotechnology and virus-based delivery platforms
- Structural biology of viral proteins and protein complexes
- Virus-like particle engineering and functionalization
- Plant virus molecular biology and host–virus interactions
- Viral genomics, evolution, and bioinformatics
10 the most representative publications for the scientific group
- Balke I., Resevica G., Zeltina V., Silamikelis I., Liepa E., Liepa R., Kalnciema I., Radovica-Spalvina I., Gudra D., Pjalkovskis J., Freivalds J., Kazaks A., Zeltins A. 2025. Investigation of plant virus-like particle formation in bacterial and yeast expression systems. Surfaces and Interfaces, 76: 107981. DOI: 10.1016/j.surfin.2025.107981
- Krenger P., Roques M., Vogt A., Pardini A., Rothen D., Balke I., Schnider S., Mohsen M., Heussler V., Zeltins A., Bachmann M. 2024. Probing novel epitopes on the Plasmodium falciparum circumsporozoite protein for vaccine development. npj Vaccines, 18;9(1):225. DOI: 10.1038/s41541-024-01006-8
- Josi R., Ogrina A., Rothen D., Balke I., Casaramona A.S., de Brot S., Mohsen M.O. 2024. Intranodal injection of immune activator demonstrates antitumor efficacy in an adjuvant approach. Vaccines (Basel), 12(4):355, DOI: 10.3390/vaccines12040355
- Krenger, P.S., Josi, R., Sobczak, J.M., Carreno Velazquez, T.L., Balke, I., Skinner, M.A., Kramer, M.F., Scott, C.J.W., Hewings S., Heath, M.D., Zeltiņš, A., and Bachmann, M.F. 2024. Influence of antigen density and TLR ligands on preclinical efficacy of a VLP-based vaccine against peanut allergy. Allergy, 79(1), pp. 184–199, DOI:10.1111/all.15897
- Balke I., Silamikelis I., Radovica-Spalvina I., Zeltina V., Resevica G., Fridmanis D., Zeltins A. 2023. Ryegrass mottle virus complete genome determination and development of infectious cDNA by combining two methods – 3′ RACE and 5′ RNA-Seq. PLoS ONE, 18(12): e0287278, DOI: 10.1371/journal.pone.0287278
- Kalnins G., Ludviga R., Kalnciema I., Resevica G., Zeltina V., Bogans J., Tars K., Zeltins A., Balke I. 2023. VPg impact on ryegrass mottle virus serine-like 3C protease proteolysis and structure. Int. J. Mol. Sci. 24(6), 5347, DOI: 10.3390/ijms24065347
- Balke I., Zeltina V., Zrelovs N., Kalnciema I., Resevica G., Ludviga R., Jansons J., Moročko-Bičevska I., Segliņa D., Zeltins A. 2022. Identification and full genome analysis of the first putative virus of sea buckthorn (Hippophae rhamnoides L.). Microorganisms, 10(10):1933, DOI: 10.3390/microorganisms10101933
- Balke I., Zeltins A., 2019, Use of plant viruses and virus-like particles for the creation of novel vaccines, Advanced Drug Delivery Reviews 145:119-129, DOI: 10.1016/j.addr.2018.08.007
- Bachmann M.F., Zeltins A., Kalnins G., Balke I., Fischer N., Rostaher A., Tars K., Favrot C., 2018, Vaccination against IL-31 for the treatment of atopic dermatitis in dogs, J Allergy Clin Immunol 142(1): P279-281.E1, DOI: 10.1016/j.jaci.2017.12.994
- Zeltins A., West J., Zabel F., El Turabi A., Balke I., Haas S., Maudrich M., Storni F., Engeroff P., Jennings G. T., Kotecha A., Stuart D. I., Foerster J., Bachmann M. F., 2017. Incorporation of tetanus-epitope into virus-like particles achieves vaccine responses even in older recipients in models of psoriasis, Alzheimer’s and cat allergy. NPJ Vaccines 2: 30, DOI: 10.1038/s41541-017-0030-8
